Forschungsprojekt: Bessere Werkstoffe durch Feinkornwalzen

Schmiederohteile aus Stahl

Kann das Querkeilwalzen die Eigenschaften eines Werkstoffs verbessern? Dieser Frage gehen Wissenschaftler am Institut für Integrierte Produktion Hannover (IPH) im Forschungsprojekt „Feinkornwalzen“ nach. Ihr Ziel ist es, mittels eines einfachen Walzprozesses ein ultrafeines Gefüge einzustellen und so die Festigkeit und Duktilität von Stahlbauteilen zu erhöhen.

Beim Querkeilwalzverfahren werden üblicherweise Vorformen für Bauteile hergestellt, die anschließend im Schmiedeprozess ausgeformt werden. Welche Möglichkeiten das Querkeilwalzen noch bietet, erproben die Ingenieurwissenschaftler des IPH im neuen Forschungsprojekt „Feinkornwalzen“.

Feinkornwalzen schafft Vorteile für Schmiedeunternehmen

Die Wissenschaftler wollen durch das Walzen nicht die Geometrie der Bauteile verändern, sondern die Gefügestruktur. Diese Veränderung ist nicht mit bloßem Auge ersichtlich: Ein Zylinder bleibt ein Zylinder. Der Unterschied steckt im Inneren des Werkstücks. Die kleinen Partikel, aus denen der Werkstoff besteht, werden zu einem ultrafeinen Gefüge gewalzt. Das hat den Vorteil, dass das Material eine höhere Festigkeit und Duktilität aufweist. Damit ist es möglich, kleinere und leichtere Bauteile zu konstruieren, die trotzdem hohen Belastungen standhalten – beispielsweise für den Leichtbau.

Um ein ultrafeines Gefüge einzustellen, werden bisher zum Beispiel Verfahren wie „Equal Channel Angular Extrusion“ (ECAE) und „High Pressure Torsion“ (HPT) genutzt. Diese können allerdings nur schwer in bestehende industrielle Fertigungsketten implementiert werden, da sie spezielle Maschinen benötigen und mit einem hohen zeitlichen Aufwand verbunden sind. Mit dem Feinkornwalzen wollen die IPH-Ingenieure eine Möglichkeit schaffen, mit bestehenden Querkeilwalzanlangen die Werkstoffeigenschaften zu verbessern. Schmiedeunternehmen könnten damit hohe Anschaffungskosten vermeiden und das Feinkornwalzen flexibel in schon bestehende Produktionsabläufe integrieren.

Untersuchung von Einfluss-Parametern

Derzeit legen die IPH-Ingenieure einen Querkeilwalzprozess aus, der zwar das Gefüge verändert, aber nicht die Geometrie des Bauteils. Anschließend untersuchen sie in Simulationsstudien und Experimenten, welche Parameter einen Einfluss auf den Prozess des Feinkornwalzens haben. Dazu variieren sie beispielsweise den Schulterwinkel, den Keilwinkel, die Umformgeschwindigkeit und die Temperatur des Werkstoffs sowie des Werkzeugs. Zudem untersuchen die Wissenschaftler, wie sich das Gefüge verändert, wenn das Bauteil nach dem Walzen in Öl, Wasser oder an der Luft abgekühlt wird. Ziel der Forscher ist es, aus den untersuchten Parameterkombinationen ein Prozessfenster abzuleiten, das einen Walzprozess ermöglicht, bei dem sich das Gefüge wie gewünscht verändert und die Korngröße nach dem Walzen im ultrafeinkörnigen Bereich liegt.

Das Projekt wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert und läuft zwei Jahre.

Schon gewusst? Der Sonderforschungsbereich “Trip Matrix Composite” der TU Bergakademie Freiberg hat vor kurzem ein Open-Access-Abschlussbuch veröffentlicht. Darin beschreiben die Autoren, wie es ihnen gelang, eine neue Klasse von Hochleistungs-Verbundwerkstoffen zu entwickeln.

Quelle: IPH, Foto: Ralf Büchler, IPH

Beitrag teilen

WhatsApp
Email
Facebook
Twitter
LinkedIn
XING

Jetzt Fachabo starten

Erhalten Sie exklusiven Zugriff auf alle Fachartikel, Whitepaper und Analysen.

Das könnte Sie auch interessieren

Strategisch geschickt positioniert: Primetals Technologies eröffnet hochmoderne Werkstatt für Service-Technologien in Brasilien

Strategisch geschickt positioniert

Primetals Technologies eröffnete kürzlich eine hochmoderne Werkstatt rund um Instandhaltungs- und Modernisierungsservices in Santa Cruz, Rio de Janeiro, Brasilien. Die 7 968 Quadratmeter große Anlage liegt strategisch günstig in der Nähe mehrerer großer Stahlproduzenten.
Groß-Investition für Highend-Produktion: Energietechnik Essen GmbH (ETE) modernisiert Schmelzbetrieb.

ETE modernisiert Schmelzbetrieb für Cronidur 30-Produktion

Die Energietechnik Essen (ETE) investiert über 11 Mio. Euro in neue Schmelzanlagen zur Fertigung von Cronidur 30 und Kappenringen. Die Modernisierung stärkt Qualität, Effizienz und Nachhaltigkeit in der Highend-Produktion für Zukunftsmärkte.
Schneller Projektfortschritt: Zhongshou Special Steel erreicht Meilenstein für Arvedi ESP-Anlage von Primetals Technologies

Schneller Projektfortschritt

Am 16. Mai 2025 feierten die Zhongshou Special Steel Group und Primetals Technologies einen bedeutenden Meilenstein. Nur ein Jahr nach Vertragsunterzeichnung gelang die erfolgreiche Installation des ersten Walzgerüsts der Arvedi ESP-Anlage am Standort von Zhongshou.
https://www.stahleisen.de/?s=tata+steel

Gemeinsam zu CO2-neutralem Stahl

Tata Steel Nederland wird Mitglied des Low Emission Steel Standards (LESS). LESS ist eine unabhängige gemeinnützige Organisation, die den Übergang der Stahlindustrie zur Klimaneutralität fördert. LESS ist führend in der Entwicklung von Standards für emissionsarmen Stahl.
KI hilft bei der Analyse von Schrott.

Wie KI Stahlprozesse optimiert und die Transformation unterstützt

Die SHS-Gruppe setzt bereits seit 2017 auf KI in der Stahlproduktion. Mit eigens entwickelten Modellen verbessert das Unternehmen Prozesse, senkt den Energieverbrauch und reduziert CO₂-Emissionen. Das Potenzial datengetriebener Technologien reicht aber weiter.
Fraunhofer IWU Bei Gebirgsankern, die Felswände entlang von Verkehrswegen, Tunnelwände oder Abbauräume im Untertagebau sichern, kann ins Sicherungsnetz stürzendes Gesteinsmaterial zu Schäden im Anker führen. Bei der untersuchten, kaltumgeformten Legierung bewirkt diese Belastung eine erneute Verfestigung des Materials. Auch Verbindungselemente profitieren von diesem Effekt. Die Entwicklung eines kaltumformbaren, kupferlegierten austenitischen Stahlgusses mit TRIP/TWIP-Eigenschaften markiert einen Meilenstein in der Materialwissenschaft und eröffnet gänzlich neue Perspektiven für sicherheitskritische Anwendungen.

TRIP/TWIP-Effekt für sicherere und nachhaltigere Bauteile

Fraunhofer IWU und TU Bergakademie Freiberg haben einen kaltumformbaren, kupferlegierten austenitischen Stahlguss mit TRIP/TWIP-Eigenschaften entwickelt. Aus ihrer Sicht ist das ein Meilenstein in der Materialwissenschaft, der zudem gänzlich neue Perspektiven eröffnet.
Anzeige
MPT